Advanced Time Series

Paper Code: 
25STT143(C)
Credits: 
4
Contact Hours: 
60.00
Max. Marks: 
100.00
Objective: 

This paper is designed to introduce a variety of statistical models for time series and monitoring the data points by applying suitable linear and non-linear models to time series data.

12.00

Unit I                                                                                                                          

Review of Linear Models: Model building in time series analysis. AR, MA, ARMA and ARIMA model and model building by Box-Jenkins approach. Stationarity and invertibility conditions, ARIMA(p,d,q) model, estimation of parameters for AR, MA, ARMA and ARIMA processes, identification of processes with ACF PACF, Model order estimation techniques-AIC, AICC, BIC, EDC, FPE and forecasting.

 

12.00

Unit II                                                                                                                        

Forms of non-stationarity in time series, Unit root: Dickey-Fuller, augmented Dickey-Fuller and Phillips-Perron tests. Panel data models: Balance and unbalance panel data, estimation in random effect and fixed effect models. ARCH and GARCH processes and models with ARCH, GARCH errors.

 

12.00

Unit III                                                                                                                      

Multivariate time series processes and their properties:  Vector autoregressive (VAR), vector moving average (VMA) and vector autoregressive moving average (VARMA) processes.

 

12.00

Unit IV                                                                                                                       

Non Linear Time Series Models: Non-linear auto regression, Threshold principle and threshold models. Amplitude-dependent exponential autoregressive (EXPAR), fractional autoregressive (FAR), Product Autoregressive Model (PAR), random coefficient autoregressive (RCAR), discrete state space auto regressive bilinear (BL), non-linear moving average, autoregressive models with conditional heteroskedasticity (ARCH).

 

12.00

Unit V                                                                                                                        

Non-linear Least Square Prediction: Non-linear least square prediction in non-linear autoregressive, nonlinear moving average, Bilinear and random coefficient autoregressive models.

Essential Readings: 
  • Box, G.E.P. and Jenkins, G.M. (1976): Time series analysis—Forecasting and Control, Holden-day, San Francisco.
  • Anderson, T.W. (1971): The Statistical Analysis of Time Series, Wiley, N.Y.
  • Montgemory, D.C. and Johnson, L.A. (1977): Forecasting and Time Series Analysis, McGraw Hill.
  • Kendall, Sir Maurice and Ord, J.K. (1990): Time Series (Third Edition), Edward Arnold.
  • Fuller, W.A. (1976): Introduction to Statistical Time Series, John Wiley, N.Y.
  • Granger, C.W.J. and Newbold (1984): Forecasting Econometric Time Series, Third Edition, Academic Press.
  • Priestley, M.B. (1981): Spectral Analysis & Time Series, Griffin, London.
  • Kendall, M.G. and Stuart A. (1966): The Advanced Theory of Statistics, Volume 3, Charles Griffin, London.
  • Bloomfield, P. (1976): Fourier Analysis of Time Series—An Introduction, Wiley.
  • Granger, C.W.J. and Hatanka, M. (1964): Spectral Analysis of Economic Time Series, Princeton Univ. Press, N.J.
  • Koopmans, L.H. (1974). The spectral Analysis of Time Series, Academic Press.
  • Nelson, C.R. (1973): Applied Time Series for Managerial Forecasting, Holden-Day.
  • Findley, D.F. (Ed.) (1981): Applied Time Series Analysis II, Academic Press.

 

Academic Year: