This paper is design to help the students in the field of forecasting and monitoring the data points by applying suitable model to time series data
Course |
Learning outcomes (at course level) |
Learning and teaching strategies |
Assessment Strategies |
|
---|---|---|---|---|
Paper Code |
Paper Title |
|||
STT 422(C) |
Time Series Analysis (Theory)
|
The students will be able to –
CO97: Define time series components and their uses CO98: Able to construct stationary time series models, nonlinear stochastic models and their applications CO99: Students will demonstrate their ability to apply statistics in other fields at an appropriate level and demonstrate their ability to apply knowledge acquired from their major to real world models.
|
Approach in teaching:
Interactive Lectures, Discussion, Power Point Presentations, Informative videos
Learning activities for the students: Self learning assignments, Effective questions, presentations, Field trips
|
Quiz, Poster Presentations, Power Point Presentations, Individual and group projects, Open Book Test, Semester End Examination
|
Time Series Analysis- Definition and its different components, additive and multiplicative models. Different methods of determining trend and seasonal and cyclic fluctuations, their merits and demerits. Time series as discrete parameter stochastic process, auto-covariance and auto-correlation functions and, their properties.
Detailed study of the stationary processes: (i) moving average (MA), (ii) auto-regressive (AR),(iii) ARMA, and, (iv) AR integrated MA (ARIMA) models. Box-Jenkins models. Discussion (withoutproof) of estimation of mean, auto-covariance and auto-correlation functions under large sample theory.Choice of AR and MA orders. Estimation of ARIMA model parameters
Spectral analysis of weakly stationary process, peridogram and correlogram analyses, computations based on Fourier transform. Forecasting: Exponential and adaptive Smoothing methods`
Multivariate Liner Time series: Introduction, Cross covariance and correlation matrices, testing of zero cross correlation and model representation. Basic idea of Stationary vector Autoregressive Time Series with orders one: Model Structure, Granger Causality, stationary condition, Estimation, Model checking.
Non-linear time series models, ARCH and GARCH Process, order identification, estimation and diagnostic tests and forecasting. Study of ARCH (1) properties. GARCH (Conception only) process for modelling volatility.